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The Applicability of Minimum-Relative-Entropy Spectral Estimation:
An Analysis and Critique

1. Introduction

Minimum-relative-entropy spectral estimation (MRESE) [1] is based on a set of
(approximate) values for the autocorrelation function (ACF) calculated from a finite
sequence of observed values of a stationary random process, the power spectral density
being the Fourier transform of the ACF according to the Wiener-Khinchin theorem 121.
MRESE assumes that the ACF values for longer lags are such as to minimize the relative
entropy of the posterior ("final") spectral estimate (i.e., the estimate that takes the fore-
going ACF values into account) with respect to the prior ("initial") estimate. This
approach to supplying the additional information needed for determining the spectrum is
justified by a set of very appealing axioms [1] concerning the effect of new information in
determining a posterior spectral estimate from a prior spectral estimate.

Since entropy is the measure of uncertainty, its maximization ensures that as little
as possible is assumed about the processes beyond what is known. In the case of a
sinusoidal signal in gaussian noise, the signal is generally not gaussian, but the minimiza-
tion of (6) is nonetheless desirable because of its ease, and, if the amplitude of the signal
is unknown, the latter might reasonably be regarded as a sinusoidal gaussian random
process. Regardless of the theoretical justifications for the use of MRESE, however, its
value lies in the improved spectral resolution that it offers [5] in suitable applications.

The relative entropy of a (posterior or final) probability density function q (x) with
respect to a (prior or initial) probability density function p (x) is

H(q,p) = fq(x) log q(X) dx,
p (x)

where x can be a vector whose T/r components represent the values of a signal plus
noise at instants spaced uniformly by r over an interval of length T. We shall take all
logarithms to the base e. Thus, the relative entropy (also called the cross entropy,
directed divergence, discrimination information, and Ku Ilback-Leibler number) per sam-
ple is rH(q,p )/T natural units (nits), a nit being 1.4427 bits (binary units). Since
H(q ,p ) is invariant under any invertible change of coordinates [31, it will have the same
value if, instead of with the components of x, we deal with the Fourier coefficients of the
sequence of values or with the powers and the phase angles of the Fourier components.
Since the sampling rate is l/r, the frequencies of these Fourier components extend from
0 up to the Nyquist frequency 1/2r, any higher-frequency components of the waveform
would be aliased into this band by the sampling process.
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For a gaussian random process, which, for any given spectrum, has the greatest
entropy rate, these phase angles are independently uniformly distributed. Their proba-
bility densities in the numerator and denominator of q (x)/ p (x) therefore cancel out and
can be ignored. The powers y of the Fourier components are independently exponen-
tially distributed with means given by the bandwidth 1/ T times the power spectral den-
sity, say Q~f ) or P(f ), respectively. Substituting the probability density functions

p(y p(f e - Ty/P(f) and q(y)- T e-TYIQ(f) for y >0 and 0 otherwise

for the power of the Fourier component of frequency f into log q(Y) and averaging

over the posterior distribution q (y), we find that these components contribute

E { Ty Ty logQ(f) -- Q(f) -IogQ --1

q~) P(f ) Q(f) P(f) P(f ) P(f )

to the relative entropy of the Fourier component at frequency f. Note that
u -log u - l isa convex function of u for u > 0 with its minimum at u =1. In that
neighborhood it is approximately (u _ 1)2/2, and it rises to oo as u - 0 and as u - zc,
thus ensuring that Q (f ) > 0.

Approximating the sum over all frequencies (spaced by 1/T) by an integral, we
find that the per-sample relative-entropy rate is

l/2r 1

f (f -log ( -i df,
o P(f) Pt(f )

which is r times the Itakura-Saito distortion [4]. The factor r here cancels the df
dimensionally, causing this quantity to be measu-:ed in nits; it has also been described as
the normalized Itakura-Saito distortion. Hence, for gaussian random processes, minimi-
zation of the relative entropy means minimization of the Itakura-Saito distortion.

Section 2 discusses the extension of MRESE to the case where one has not only
values of the ACF of the sum of two waveforms-signal and noise--but also prior esti-
mates of their separate spectra as well as weights for the latter, and one wants posterior
estimates for their separate spectra. Section 3 studies the limit as the weight for the
prior estimate of the spectrum of a sinusoidal signal of unknown frequency is allowed to
approach zero because the broad prior estimate, reflecting ignorance as to its frequency,
is obviously a very poor approximation to the spectrum of a sinusoid. Section 4 deals
with the resulting posterior estimate of the signal's spectrum, and Sec. 5 with computa-

£ tion of estimates of the signal's frequency and strength. Section 6 discusses the incon-

sistency between the single-signal MRESE estimate of the spectrum of the sum of the
two waveforms (signal and noise) and the sum of their separate estimates, and Sec. 7
determines the appropriate scale factors to be used when the prior estimates of the sig-

*' nal and noise spectra are subject to unknown scaling, as in the case where there may be
an unknown but constant attenuation in each transmission path. Section 8 discusses
various other problems yet to be resolved in regard to the application of MRESE, and
finally Sec. 9 summarizes these problems and the progress that has been made in the
preceding sections.

2. Multisignal MRESE

Multisignal minimum-relative-entropy spectral estimation 6II uses M ! I values

R (r ) (with r = 1, 2 . .. I) of the autocorrelation function of the observed signal-

2



plus-noise process along with prior estimates P, (f ) and P, (f ) of the signal and noise
spectra, respectively, and [7] positive weights w, and w, (possibly depending on the fre-
quency f ) for these prior estimates--or, more precisely, for the Itakura-Saito distortions

I/ 27r Q.UQ1

D (Q.,P. -P r log p - 1 df (1)

and
1/2.7 r.I) ,Q(

D(Q.,P.) =rf Q. U log Q.-U I df (2)

that they suffer when replaced by Q,(f ) and Q, (f )-to obtain the posterior spectral
estimates

Qo(IP)(f)

+ IE r cos 2r rf (3)P,( U W. =0

and

Qn(f) = 1
-, h 1 +- E Or cos 2r rf r (4)P. ( f ) W r. =0

where the {3, } (Lagrange multipliers used in the distortion minimization) aro chosen so
that

1/2r

f Q,(f) Qn(f)]cos2r rfrdf =R(rr) (5
0

for r = 0, 1. , M; where r is the sampling interval. Because the second variation of
the weighted Itakura-Saito distortion

1/2r Q. 1 1/2 ..( _. .(1
P.(f) log -I df + rfw.(f - - -ijr (6

with respect to Q. (f), viz., rw,/Q,2(f ), is positive while the constraints (5) are linear
in Q,(f ), a posterior spectrum of the form (3) obtained by setting the first variation
equal to zero will not only minimize (1) but will yield the unique minimum. Similarly, a
posterior spectrum of the form (4) uniquely minimizes (2).

The M + I conditions (5) on Q. (f ) + Q. (f) imply that

Q.(f ) + Q,(f ) = 2rR (0) + 4rE R(rr) cos 2r rf r

with R(O), ,R(Mr) having the measured values and R((M+I)r),R((M-2)r),
having thi values that minimize (6). Thus, the known values of the autocorrelation
function determine the gross form of the posterior total spectrum while the fine structure
is implied by the minimization of the weighted relative entropy.

3. Small Weight for Prior Signal Spectrum

In some applications, such as HF-radar, the signal may often be well approximated

by a sinusoid of unknown strength and (Doppler) frequency. In such a case, the limit of
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(3) as w, -0 is of considerable interest because it has been observed [71 that, when w, is
small, Q, (f ) tends to be narrow and thus provides a sharp indication of the signal fre-
quency f,. When f, is unknown and P,(f ) is therefore taken to be flat across the
band of possible values, it should be appropriate to assign only a small weight to this
clearly inaccurate broad estimate of a spectrum that is known to be narrow.

We cannot simply set tv, = 0, however, as there would then be no constraint on
the normalized Itakura-Saito distortion (1) and so Q, (f ) would no longer have to
remain positive. Another reason for a careful approach to the limit is that the forms (3)
and (4) along with the constraints (5) do not uniquely determine the Lagrange multi-
pliers {/3 } despite the convexity of (1) and (2) and the consequent uniqueness of the
minimum of (6). More than one set of values for the { , } in (3) and (4) will satisfy (5)
because of the nonlinearity of (3) and (4) as functions of the {3r }. In particular, as
wo - 0, there are generally two types of solutions-one with values for the {3, } that
likewise approach 0 and the other with values for the {3. } that do not. In the latter
case, Q, (f ) generally approaches 0 for every f , and the constraints (5) are satisfied by
(4) alone. This solution, however, yields a positive weighted Itakura-Saito distortion (6)
while the other, with 3, -* 0, may make Q, (f) = P, (f) and may then satisfy (5) by
giving (3) a suitable form, thus making (6) zero. [However, there will be no solution of
the latter type if there is no nonnegative Q, (f ) of the form (3) that, when added to
Q (fY) = P, (f ), satisfies (5); e.g., when P, (f) is too large.1

Neither of these two types of spectral estimates is satisfactory, as one yields a van-
ishing posterior signal-spectrum estimate, and the other fails to modify the noise-
spectrum estimate on the basis of the information (5). Accordingly, before letting
w, - 0. we impose the constraint

1/2r

f Q. (f) df = S (7)

on Q, (f ) (with the help of the Lagrange multiplier X) in addition to the constraints (5)
so that the total estimated signal power will be S and cannot go to zero with w, even
though we restrict our attention to posterior spectra of the form (3) and (4) with the
{3, } not all going to zero so that Q,, (f ) will be influenced by the ACF values (5). Being
another linear constraint like (5), (7) ensures that the minimization of the weighted
Itakura-Saito distortion (6) still yields a unique set of posterior spectral estimates.

The effect of (7) is to add to the B0 in (3) but not to that in (4) a constant X which
is to be given the value satisfying (7). [In the case of a flat w, (f ), a flat 1!P, (f ) can
be absorbed into X.[ X must be large enough to ensure that the denominator of (3) never
becomes negative-but only barely large enough when iv, is small, for otherwise (3) will
approach zero at all frequencies and will not satisfy (7). When w, (f ) is small, Q, (f
then differs significantly from zero only near the frequency, say f 0, where the summa-
tion in its denominator is small, i.e.. near the minimum of the summation in (4). Hence,

-., Q,(f ) automatically becomes a line spectrum with power S at frequency f 0, which is
*..-., thus the minimum-relative-entropy estimate of the signal's frequency. As w, (f ) goes to

zero at all frequencies, its effect and that of P,(f ) on Q,(f ) vanish, and it becomes% .

unnecessary to choose a prior estimate or weighting function for the signal spectrum.

Since, with (7) included, the f3, } do not approach zero, Q, (f ) is able to reflect,
the information contained in (5). Q,(f ) too is able to reflect this information because
(3) then differs from zero only where the quantity multiplying 1,u, in its denominator is
small (on account of the inclusion of '). Thus, the resulting posterior spectral estimates

oq 4



have the desirable aspects of both the solution for which f3, -* 0 and that for which it
does not, and Q, (f ) has the right form for a sinusoidal signal.

4. Posterior Signal Spectrum

When w, is small but is still positive, the principal denominator of (3) has a global

minimum at, say, f 0 that does not quite reach zero, and in that neighborhood it is
approximately a quadratic function of the frequency f. Hence, Q,(f ) has the shape of
a witch of Agnesi [like the Cauchy density function p(z) = r-1i(1 + z2)] centered at
f 0. The height of the witch is proportional to S 2/w8 , and its width is proportional to
w, IS when w, is small. As long as S is small, the apportionment of this amount of
power to the posterior signal spectrum Q, (f ) will hardly affect the posterior noise spec-
trum Q,, (f ), and the latter can be determined in the single-signal manner [11 just as if
no signal were present, i.e., as (4) with the {/3, } determined by (5) with Q,(f ) = 0.

When S is significant in comparison with the total noise power, its effect on the
{$r } must be taken into account, as it will contribute S cos 2r 7rf or to (5). In any
case, the location f 0 of the global minimum of

41W Q( f*wf(f) Q (f-----) P (f (8)

which is the summation in (3)] is the MIRESE estimate of the frequency f, of the sig-
nal. Without the condition (7) (and without X) (8) might remain positive, making
Q, (f) = 0 at all frequencies, or it might go to zero at some frequency f 0, giving the
posterior signal power at that frequency the indeterminate value 0/0. Thus, (7) resolves
any such indeterminacy.

5. Estimation of Signal Strength and Frequency

It remains to find a suitable way to choose S when the signal strength is unknown
(and may be 0) and a way to assign an accuracy to the estimate f 0 of the signal's fre-
quency f, as well as to provide a measure of the reliability of the determination that a
signal is present or absent. A possible way to estimate the signal power S would be to
determine the S that minimizes the weigtted Itakura-Saito distortion (2). Experimental
testing may show whether this approach is useful. If the resulting value of S exceeds
some threshold, it can be deemed to indicate the presence of a signal, and otherwise its
absence.

The second derivative of (6) with respect to S at its minimum (with w, = 0) may
be inversely proportional to the variance of this estimate of S, since, for a normal distri-
bution, the relative entropy resulting from a shift equals half the ratio of the square of
that shift to the variance. More generally, the second derivative at zero hift of the rela-
tive entropy of a distribution with respect to a shifted version, which is the Fisher infor-
mation of that distribution [8, p. 1010], cannot, by the Cram6r-Rao inequality [8, p.
943], be less than the reciprocal of the variance, with equality only in the normal case,

and so this second derivative provides a lower bound for the variance.

The determination of the signal-frequency estimate f 0 is straightforward when S is
small, but an iterative procedure appears necessary for larger S. For this purpose the
f 0 for small S can be used to subtract S cos 2r irf or from the initial values of R (r r).
A new f 0 can then be obtained from the minimum of the resulting function (8), and the
process can be continued for an increasing sequence of values of S. This procedure will

5
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yield a unique estimate of the signal's frequency even though it might otherwise not be
unique. The iterative estimation of f, as the total signal power S is gradually increased
from zero may well require less computing time than the search 19 for the spectra (3)
and (4) that satisfy (5), as it has the advantage of not needing a prior signal spectrum

, nor relative weights for prior signal and noise spectra. It remains to be seen how well
this approach works and in what sort of applications it performs best. (See also '10J.)

The iterative process for determining the estimate f 0 of the signal frequency f,
and the estimate Q,, (f ) of the noise spectrum begins by computing the initial estimate
Q, 0 1(f ) from P, (f ) and the observed values of R (r r) via the Levinson technique uti-
lized in the second algorithm of [9i and then determining the initial estimate f 0 as
that f for which w,, (f )rl ,. Q(O)(f)- 1 'P,, (f is least. At the i th succeeding stage of
the iteration, the observed values of R (r r) are reduced by S(S) cos 2r rf (i-1) 7, QO (f
is computed from them and P,,(f ), and fI () is determined as the f that minimizes
w,n (f )[1i'Q.(')(f ) - 1iP, (f )1. The iteration is continued for a sequence of values S/ij
of S increasing from S(°) - 0 until 5(') reaches the desired total signal power S, with
decreasing increments as this value is approached.

6. Consistency of Multiple-Signal and Single-Signal Spectral Estimates

One might expezt the sum of the spectra (3) and (4) to equal the estimate

Q(f) - 1
1(f Z3, cos2r f r9

Pp.f P(f =

of the spectrum of the total observed process subject to the same constraints
1,2r

f Q(f )cos2r rf rdf =R (r7). (10)
0

A simple example, M - 1, suffices to show, however, that, in the case of flat prior spec-
tral estimates and constant weights, for example, (9) is in general not the sum of (3) and
(4). When (7) is very small, the posterior signal spectrum has very little effect on the
total posterior spectrum, and there is almost no difference between (9) and the sum of
(3) and (4). When w, is small but S is not, however, Q,(f ) includes a substantial spec-
tral line while (9) does not, and so there is again a significant difference between the sum
of the multisignal minimum-relative-entropy estimates and the single-signal estimate.
The knowledge that a spectral line may be present fundamentally alters the nature of
the estimate.

Another approach 11'; to multiple-signal relative-entropy spectral estimation, how-
ever, begins with the assumption that the sum of the posterior spectra and cross-spectra
is the MRESE of the sum of the signal and noise based on the prior estimate of the spec-
trum of the sum. Musicus and Johnson divide the difference between the total posterior
and total prior spectra among the posterior signal and noise spectra and cross-spectra bv
what is, in effect. \Viener filtering. The resulting posterior signal and noise spectra there-
fore differ from (3) and (4), and cross-spectra arise even in the absence of prior cross-
correlation. This approach does not incorporate weighting, and so it is not possible to
remove the influence of the prior signal-spectrum estimate upon its posterior spectral
estimates.

. 6
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7. Unknown Scales for Prior Spectra

In some applications, such as the processing of noisy speech, the signal and noise
will suffer unknown constant power gains 10 logl 0 -y, and 10 logt0 f, decibels. Here it
may be appropriate to use -, P, (f ) and -y. P. (f ) as the prior spectral estimates

instead of P, (f ) and P, (f ). Substituting these into (1), (2), and (6) and minimizing (6)
under the constraints (5) with respect to Q, (f ) and Q (f ), we get (3) and (4) with

these substitutions for P, (f ) and P,, (f ). Setting the derivatives of (6) with respect to

1', and -, equal to zero, we find
1/2r Qi f)
f wi(f df

1/2r (11)
f wvi (f) df

0

for i s and n. Hence,

Q(f1 (12)

f wi (f' )df' E/3, cos 2r 7rf r
0 0

1/2r + W( U
f f )Qj (f ' df ' /Pi(f '

0

for i = s and n . Since the second partial derivative of (6) with respect to 1/l/i is
1, r

r i f wi(f ) df > 0, we see not only that (11) yields a minimum for (6) but also that
0

this minimum is unique.

If either prior spectral density Pi(f ) is independent of frequency, the effect of (11)
is simply to replace it in (3) or (4) with the value of the corresponding spectral estimate
Q, (f ) averaged over the frequency band from 0 to 1,/2r with the weighting wi (f ). In
the case of noise alone with a flat w, (f ), this average value of Q,,(f ) is just 2rR (0).

Otherwise it is necessary to search for the values of -y3 and -, that are consistent with
(12) as well as for the values of the { 3, } that cause the sum of (12) for i =s and for
t =n to satisfy (5).

To simplify the computation one might instead have chosen -, and -, to normal-
ize the prior spectral estimates,. i.e., to give them each a unit total power. This pro-
cedure, however, would increase (6): and the choice of a unit total power would intro-
duce an inadmissible arbitrary effect on the result.

8. Problems Remaining to be Resolved

8.1. Inezactness of Autocorrelation-Function Values

Although MRESE appears to be based on a solid logical foundation 1 . it must be
recognized that ACF values computed from a finite record will not, exactly equal the true
values of the autororrelation function. Thus, not only are ACF values for lags longer

than the available record unknown, but those for shorter lags (especially for only slightly
shorter lags) are known imprecisely, contradicting an assumption of the NIRE!E
approach. Efforts :12,,131 have been made to take into account the inexactitude of ACF

7
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values by imposing an upper bound on a quadratic function of their departures from the
initial estimates and then determining the set of ACF values which, subject to this con-
dition, minimizes the relative entropy of the posterior spectral estimate with respect to
the prior.

,.. 8.2. Logical Assignment of Weights to Prior Spectral Estimates

While the procedure just described produces a unique posterior spectral estimate
it supposes that the corrections of the approximate ACF values should combine to
minimize the relative entropy. It is equally likely, however, that they will combine to
maximize it; but it is much more likely that they will move the ACF vector (the set of
ACF values) in a nearly orthogonal direction that hardly affects the relative entropy but
may have significant effects upon the shape of the posterior spectral estimate. Thus. a
better idea of the implications of the approximate nature of the ACF values should be
obtainable by exploring the ACF-vector space in the neighborhood of the estimated
point, and attaching to each spectral value an uncertainty giver, by the variety of result-
ing posterior spectral values.

Such a procedure, however, would involve a far greater amount of computation
than the more naive MRESE approaches, but it could provide information as to the
accuracy of the posterior spectral estimate and could thus yield a posterior weighting
function that might enable the posterior spectral estimate to be used as a prior estimate
with new observations in the same way as the previous prior estimate ;7.. It may, on the
other hand, be necessary to use each of a large number of previous posterior spectra as
the new prior in order to obtain a reliable picture of the new posterior spectra implied
by them.

Apart from this approach (which ignores correlations between errors in the values
of the ACF for different lags) and that of Secs. 3 and 4 with w - 0, a logical basis is
needed for assigning weights to the prior spectral estimates for the signal and the noise
just as the reciprocals of the variances of the residuals serve as weights for overdeter-
mined linear equations. It remains to be seen whether weighting inversely proportional
to the variance of the prior estimate at each frequency (but still ignoring covariances)
might yield satisfactory posterior spectral estimates.

8.3. Criterion for Admissibility for Prior Spectral Estimates

As formulated, MRESE has imposed no requirements concerning the accuracy or
*: reliability of the prior spectral estimates that it uses, and so there is as yet no logical

reason to prefer one prior estimate (such as the maximum-entropy flat estimate) over
another. To avoid this arbitrariness and to ensure the usefulness of the resulting poste-
rior estimates, it is necessary that the prior estimates have adequate credentials. Suit-
ably assigned and utilized weights might provide a basis for the admissibility of prior
estimates. In fact, it might turn out that the classical spectral estimate 1-4' based on
the same ACF data could serve well as a prior for obtaining a much sharper posterior
minimum-reiative-entropy estimate.

8.4. The Relative Nature of Weighting

By introducing the weighting functions w,(f ) and w,(f ) for the Itakura-Saito
distortions (1) and (2), we are able to place greater or lesser reliance on P, (.f I or P, ( f
at each frequency. These weights are only relative, however, as multiplication of both
by the same constant will leave the posterior spectral estimates unchanged: there is as
yet no way to introduce absolute measures of the credibiditi-s of the prior estimates. An
absolute standard with respect to which weights might somehow be expressed is the fiat
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prior estimate that underlies maximum-entropy spectral estimation. It might be
appropriate for the posterior spectral estimate based on such a prior to be independent
of any weighting, as the constant spectral density already represents maximum
entropy-maximum uncertainty as to the spectrum. Although (3) and (4) depend on
w,(f ) and w,(f ) even in this case, a new approach to weighting might remove that
dependence.

8.5. Other Methods of Spectral Estimation

Many other forms of spectral estimation besides MRESE and classical methods 114'
have been devised [15-[191-each with its own devotees, who find it well suited to par-
ticular applications. When a spectrum can be assumed to be described by a finite
number of unknown parameters, its estimation can be treated as a parameter-estimation
problem. MRESE performs just such a parameter fitting and does it very well for
autoregressive spectra of the form (3) and (4), to which it leads, especially when the
order M of the autoregressive process is known. A new approach 120 to maximum-
entropy spectral analysis offers confidence intervals that may help to resolve some of the
weighting problems mentioned above. For estimating other kinds of spectra, on the
other hand, another method may turn out to be superior to MRESE. It needs to be
determined experimentally why and in what cases MfRESE does well.

8.6. Iterative Use of MRESE

In OTH-radar detection MRESE has been found misleading at low signal-to-clutter
ratios if the posterior estimates of the signal and clutter spectra (3) and (4) are used as
new priors [211, since a weak signal can then show up more and more in the posterior
clutter spectrum rather than in the posterior signal spectrum, thus escaping detection.
To avoid this outcome, it seems preferable not to iterate but, instead, to use the average
of all of the autocorrelation values for each lag--or to average all of the posterior spectra
obtained without iterating. Experience should show when such an approach is needed
and when iteration is satisfactory.

8.7. Limitation on the Order M of the Autoregressive Spectrum

In applications it has been found necessary to choose the right order M for the
autoregressive filter whose frequency response represents the minimum-relative-entropy
or the maximum-entropy estimate of the spectrum of interest, as too large an M yields
too many spectral peaks and valleys-features that exhibit no stability with repeated
analysis or increase in M. MRESE therefore makes use of only a limited number of
values R (0), ' ,R (Mr) of the ACF. The information contained in the estimates of
the ACF for longer lags is ignored, and it seems desirable to find a way, within the
MRESE framework, to utilize this additional information.

The spectrum that fits these M + 1 ACF values will have autocorrelation-function
values for longer lags that do not quite match the available ACF estimates
R ((M-+1)-r), R ((M +2)r), .. of longer lags, and it may therefore be useful to adjust

0,' ... ,/3M to reduce the mismatch while introducing not too large discrepancies for
R(O), . - ,R(Mr). The result, however, may no longer be describable as MRESE but.
rather, as curve fitting unless an information-theoretical basis can be devised for the
foregoing parameter adjustment. An alternative approach would be to use an average of
posterior spectra based on R (k r), R ((k -1)r), • • • , R ((k +M)r) for k = 0. 1. •
Again the value of each approach will have to be determined by its success in applica-
tions.



8.8. Disregard of Available Information

MRESE has been described as making full use of all available ACF information.
unlike classical spectral analysis, which windows the ACF to make it fall smoothly to
zero at lags exceeding the length T of the available record, and as, in effect, determining
values for the ACF of longer lags in a manner that minimizes the amount of information
they imply concerning the spectrum. We see, however, that MRESE throws away even
more information than classical spectral analysis, viz., R (r r) for r > M , where M r is
generally small compared with T, and it instead estimates these ACF values. It does
make very good use of R (0),. . R (%I r) and is thus able to provide better spectra
than classical methods in suitable applications. Some of the foregoing approaches may.

Jd on the other hand. be able to do even better by making use of the ACF values that are
redundant for autoregressive processes of order M but otherwise contain useful informa-
tion.

8.9. Oversampling

The problem of having too many ACF values (if it is indeed a problem) can be
exacerbated by reducing the interval r between the samples of the record of a waveform
of duration T. While the most convenient sampling interval is Nyquist's when the
waveform can be assumed to be bandlimited, the spectral density may fall only slowly
toward zero with increasing frequency, thus raising a question as to what should be con-
sidered its cut-off frequency and what should accordingly be the sampling interval r. A
shorter sampling interval ought to yield at least as much information about the
waveform and its spectrum as a longer one, but some modification of MRESE may be
necessary in order to take advantage of such an increase in the amount of information
available without thereby introducing false and unstable spectral peaks and valleys.

9. Summary

Despite its success in some applications, we thus see that MRESE might benefit
from the investigation of means for taking care of:

o The approximate nature of the available values of the autocorrelation function,

* Use of the information contained in the ACF of lags beyond those now utilized,

9 The superabundance of information due to a shorter sampling interval r,

* Posterior spectra of the form (3) and (4) satisfying (5) but not minimizing (6).

e Nongaussian waveforms,

o Specification of credentials or qualifications to be required of prior estimates,

o Absolute rather than the present relative weighting of prior spectral estimates.

* Logical assignment of weights to prior spectral ostimates, and

* Determination of weights for the posterior spectra when used as priors.

@D4 10

% " ' ' " "" ' "" " ','.,." "" " ."" ". , """. . i. -.,'''"" ''"; . ".-"'" " '



The first five problems listed above are common to both MRESE and maximum-
entropy spectral estimation. Hence, any solution of them would benefit both. Some pos-
sible approaches to the solution of several of the foregoing problems have been presented
in the preceding sections. In Secs. 3 and 4 the problem of assigning a prior spectral esti-
mate for a sinusoidal signal has been solved by investigation of the limit as the weight
given to that estimate is allowed to approach zero. It is then unnecessary to introduce
either a prior spectral estimate for the signal or a weight for it. In Sec. 7 we determined
the best choice of gain factors for prior spectral estimates when the latter are subject to
unknown scaling. All of these ideas need to be tested experimentally in a wide variety of
applications along with the standard form of MRESE and other methods 1141-1191 of
spectral analysis to compare them as to resolution, reliability, and computational
requirements.
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